首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   113篇
  国内免费   64篇
  2024年   4篇
  2023年   48篇
  2022年   42篇
  2021年   71篇
  2020年   45篇
  2019年   62篇
  2018年   75篇
  2017年   46篇
  2016年   44篇
  2015年   76篇
  2014年   106篇
  2013年   109篇
  2012年   74篇
  2011年   96篇
  2010年   77篇
  2009年   75篇
  2008年   94篇
  2007年   70篇
  2006年   45篇
  2005年   57篇
  2004年   55篇
  2003年   51篇
  2002年   42篇
  2001年   25篇
  2000年   31篇
  1999年   25篇
  1998年   19篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   11篇
  1993年   10篇
  1992年   7篇
  1991年   10篇
  1990年   6篇
  1989年   7篇
  1988年   13篇
  1987年   8篇
  1985年   9篇
  1984年   18篇
  1983年   10篇
  1982年   12篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
  1974年   8篇
  1973年   4篇
排序方式: 共有1768条查询结果,搜索用时 187 毫秒
1.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
2.
3.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   
4.
The aim of the study was to investigate the effects of endovascular hypothermia on mitochondrial biogenesis in a pig model of prolonged cardiac arrest (CA). Ventricular fibrillation was electrically induced, and animals were left untreated for 10 min; then after 6min of cardiopulmonary resuscitation (CPR), defibrillation was attempted. 25 animals that were successfully resuscitated were randomized into three groups: Sham group (SG, 5, no CA), normal temperature group (NTG, 5 for 12 h observation and 5 for 24 h observation), and endovascular hypothermia group (EHG, 5 for 12 h observation and 5 for 24 h observation). The core temperatures (Tc) in the EHG were maintained at 34 ± 0.5 °C for 6 h by an endovascular hypothermia device (Coolgard 3000), then actively increased at the speed of 0.5 °C per hour during the next 6 h to achieve a normal body temperature, while Tc were maintained at 37.5 ± 0.5 °C in the NTG. Cardiac and mitochondrial functions, the quantification of myocardial mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, and NRF-2 were examined. Results showed that myocardial and mitochondrial injury and dysfunction increased significantly at 12 h and 24 h after CA. Endovascular hypothermia offered a method to rapidly achieve the target temperature and provide stable target temperature management (TTM). Cardiac outcomes were improved and myocardial injuries were alleviated with endovascular hypothermia. Compared with NTG, endovascular hypothermia significantly increased mitochondrial activity and biogenesis by amplifying mitochondrial biogenesis factors’ expressions, including PGC-1α, NRF-1, and NRF-2. In conclusions, endovascular hypothermia after CA alleviated myocardial and mitochondrial dysfunction, and was associated with increasing mitochondrial biogenesis.  相似文献   
5.
6.
7.
Most proteins located in chloroplasts are encoded by nuclear genes, synthesized in the cytoplasm, and transported into the organelle. The study of protein uptake by chloroplasts has greatly expanded over the past few years. The increased activity in this field is due, in part, to the application of recombinant DNA methodology to the analysis of protein translocation. Added interest has also been gained by the realization that the transport mechanisms that mediate protein uptake by chloroplasts, mitochondria and the endoplasmic reticulum display certain characteristics in common. These include amino terminal sequences that target proteins to particular organelles, a transport process that is mechanistically independent from the events of translation, and an ATP-requiring transport step that is thought to involve partial unfolding of the protein to be translocated. In this review we examine recent studies on the binding of precursors to the chloroplast surface, the energy-dependent uptake of proteins into the stroma, and the targeting of proteins to the thylakoid lumen. These aspects of protein transport into chloroplasts are discussed in the context of recent studies on protein uptake by mitochondria.Abbrevlations CAT chloramphenicol acetyl transferase - CCCP carbonylcyanide m-chlorophenylhydrazone - DHFR dihydrofolate reductase - EPSP 5-enol-pyruvylshikimate-3-phosphate - ER endoplasmic reticulum - LHCP light harvesting chlorophyll a/b apoprotein - NPT neomycin phosphotransferase - oATP adenosine-2,3-dialdehyde-5-triphosphate - P-inorganic phosphate Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SSU small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - SRP signal recognition particle  相似文献   
8.
9.
Summary Cells ofScherffelia dubia regenerate flagella with a complete scale covering after experimental flagellar amputation. Flagellar regeneration was used to study Golgi apparatus (GA) activity during flagellar scale production. By comparing the number of scales present on mature flagella with the flagellar regeneration kinetics, it is calculated that each cell produces ca. 260 scales per minute during flagellar regeneration. Flagellar scales are assembled exclusively in the GA and abstricted from the rims of thetrans-most GA cisternae into vesicles. Exocytosis of scales occurs at the base of the anterior flagellar groove. The central portion of thetrans-most cisterna, containing no scales, detaches from the stack of cisternae and develops a coat to become a coated polygonal vesicle. Scale biogenesis involves continuous turnover of GA cisternae, and scale production rates indicate maturation of four cisternae per minute from each of the cells two dictyosomes. A possible model of membrane flow routes during flagellar regeneration, which involves a membrane recycling loop via the coated polygonal vesicles, is presented.  相似文献   
10.
In a previous paper (Van 't Sant, P., Mak, J.F.C. and Kroon, A.M. (1981) Eur. J. Biochem. 121, 21–26) we showed the existence of three elongated precursor proteins (45, 36 and 25 kDa) of mitochondrial translation products in Neurospora crassa. We presented some indications that the largest precursor could be related to subunit 1 of cytochrome c oxidase. Here we present conclusive evidence that the 45-kDa polypeptide is indeed this precursor by demonstrating that an immunodetectable 45-kDa polypeptide displays the same behaviour as the labeled 45-kDa precursor; both accumulate after long incubation with cycloheximide or by decreasing the temperature and both are not tightly membrane bound. Moreover the antibody against subunit 1 of cytochrome c oxidase also recognizes, in immunoadsorption experiments, besides subunit 1, the 45-kDa polypeptide accumulated by cycloheximide incubation. Furthermore, we developed a small scale purification of antibodies against subunit 1 of cytochrome c oxidase. By means of these purified antibodies it is demonstrated that the 45-kDa polypeptide and subunit 1 have corresponding antigenic determinants. Under the various conditions tested, all three precursors are less firmly membrane-bound than the mature subunits. Finally, it is observed that in short incubations in vivo, chloramphenicol inhibits the processing of the mitochondrially synthesized precursors, under conditions where mitochondrial translation is only partially inhibited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号